臺(tái)達(dá)ME300變頻器:小身材,大能量,開(kāi)啟工業(yè)調(diào)速新篇章
臺(tái)達(dá)MH300變頻器:傳動(dòng)與張力控制的革新利器-友誠(chéng)創(chuàng)
磁浮軸承驅(qū)動(dòng)器AMBD:高速變頻技術(shù)引導(dǎo)工業(yè)高效能新時(shí)代
臺(tái)達(dá)液冷型變頻器C2000-R:工業(yè)散熱與空間難題
臺(tái)達(dá)高防護(hù)型MS300 IP66/NEMA 4X變頻器
重載設(shè)備救星!臺(tái)達(dá)CH2000變頻器憑高過(guò)載能力破局工業(yè)難題
臺(tái)達(dá)C2000+系列變頻器:工業(yè)驅(qū)動(dòng)的優(yōu)越之選!
臺(tái)達(dá)CP2000系列變頻器:工業(yè)驅(qū)動(dòng)的革新力量!
臺(tái)達(dá)變頻器MS300系列:工業(yè)節(jié)能與智能控制的全能之選。
一文讀懂臺(tái)達(dá) PLC 各系列!性能優(yōu)越,優(yōu)勢(shì)盡顯
在深度學(xué)習(xí)中,解決訓(xùn)練數(shù)據(jù)不足常用的一個(gè)技巧是“預(yù)訓(xùn)練-微調(diào)”(Pretraining-finetune),即大數(shù)據(jù)集上面預(yù)訓(xùn)練模型,然后在小數(shù)據(jù)集上去微調(diào)權(quán)重。但是,在訓(xùn)練數(shù)據(jù)極其稀少的時(shí)候(只有個(gè)位數(shù)的訓(xùn)練圖片),這個(gè)技巧是無(wú)法奏效的。圖2展示了一個(gè)檢測(cè)模型預(yù)訓(xùn)練過(guò)后,在單張訓(xùn)練圖片上微調(diào)的過(guò)程:盡管訓(xùn)練集上逐漸收斂,但是檢測(cè)器仍無(wú)法檢測(cè)出測(cè)試圖片中的物體。這反映出了“預(yù)訓(xùn)練-微調(diào)”框架的泛化能力不足。利用SpeedDP經(jīng)過(guò)大量的數(shù)據(jù)訓(xùn)練后,機(jī)器就能夠精確檢測(cè)跟蹤圖像中的物體??焖僖苿?dòng)的汽車(chē)怎么鎖定跟蹤?比較好的目標(biāo)跟蹤性價(jià)比
SpeedDP的出現(xiàn)則正好解決了這一問(wèn)題,它是一個(gè)基于瑞芯微的深度學(xué)習(xí)算法開(kāi)發(fā)平臺(tái),提供從數(shù)據(jù)標(biāo)注、模型訓(xùn)練、測(cè)試驗(yàn)證到RockChip嵌入式硬件平臺(tái)模型部署的可視化AI開(kāi)發(fā)功能。平臺(tái)支持本地化服務(wù)器部署,高校、特殊單位等數(shù)據(jù)敏感的用戶無(wú)需擔(dān)心數(shù)據(jù)信息泄露的問(wèn)題。高校等單位可以通過(guò)模型訓(xùn)練和模型評(píng)估等功能,打造一個(gè)符合需求的AI模型,來(lái)幫助進(jìn)行海量的數(shù)據(jù)標(biāo)注,這不僅將節(jié)約大量的數(shù)據(jù)標(biāo)注時(shí)間,更重要的是能夠幫助提升自身算法在RK3588圖像處理板的檢測(cè)識(shí)別能力。新疆目標(biāo)跟蹤功效慧視RV1126圖像處理板能實(shí)現(xiàn)24小時(shí)、無(wú)間隙信息化監(jiān)控。
目標(biāo)跟蹤時(shí),多維度、多層級(jí)信息融合也十分重要。為了提高對(duì)運(yùn)動(dòng)目標(biāo)表觀描述的準(zhǔn)確度與可信性,現(xiàn)有的檢測(cè)與跟蹤算法通常對(duì)時(shí)域、空域、頻域等不同特征信息進(jìn)行融合,綜合利用各種冗余、互補(bǔ)信息提升算法的精確性與魯棒性.然而,目前大多算法還只是對(duì)單一時(shí)間、單一空間的多尺度信息進(jìn)行融合,使用者可以考慮從時(shí)間、推理等不同維度,對(duì)特征、決策等不同層級(jí)的多源互補(bǔ)信息進(jìn)行融合,提升檢測(cè)與跟蹤的準(zhǔn)確性。成都慧視開(kāi)發(fā)的Viztra-HE030圖像處理板采用了RK3588高性能芯片,工業(yè)級(jí)的處理能力能夠運(yùn)用到諸多行業(yè)。
無(wú)人機(jī)能夠通過(guò)高空拍攝快速獲取大范圍、多角度的地面信息。但是傳統(tǒng)的攝像頭只能獲取視頻數(shù)據(jù),對(duì)于許多需要進(jìn)行數(shù)據(jù)分析的行業(yè)來(lái)說(shuō)顯然不夠智能化,從無(wú)人機(jī)視頻數(shù)據(jù)中快速獲取提煉大量有價(jià)值的信息,不僅能夠提升工作效率,還能夠減少不小的成本支出。這就是無(wú)人機(jī)的AI識(shí)別能力。通過(guò)識(shí)別算法,在無(wú)人機(jī)工作時(shí)就對(duì)目標(biāo)范圍進(jìn)行AI檢測(cè)識(shí)別,從而提煉所需信息。這就需要對(duì)無(wú)人機(jī)進(jìn)行智能化改造,可以在傳統(tǒng)無(wú)人機(jī)吊艙中植入成都慧視開(kāi)發(fā)的高性能AI圖像處理板,如利用RK3588深度開(kāi)發(fā)而成的Viztra-HE030圖像處理板,6.0TOPS的算力能夠快速處理無(wú)人機(jī)識(shí)別到的復(fù)雜畫(huà)面信息,這樣就有了硬件基礎(chǔ),剩下的就需要對(duì)自身算法進(jìn)行不斷優(yōu)化提升?;垡昍K3399PRO板卡可以用于大型公共停車(chē)場(chǎng)。
目標(biāo)跟蹤是計(jì)算機(jī)視覺(jué)研究領(lǐng)域的熱點(diǎn)之一,并得到廣泛應(yīng)用。相機(jī)的跟蹤對(duì)焦、無(wú)人機(jī)的自動(dòng)目標(biāo)跟蹤等都需要用到了目標(biāo)跟蹤技術(shù)。另外還有特定物體的跟蹤,比如人體跟蹤,交通監(jiān)控系統(tǒng)中的車(chē)輛跟蹤,人臉跟蹤和智能交互系統(tǒng)中的手勢(shì)跟蹤等。簡(jiǎn)單來(lái)說(shuō),目標(biāo)跟蹤就是在連續(xù)的視頻序列中,建立所要跟蹤物體的位置關(guān)系,得到物體完整的運(yùn)動(dòng)軌跡。給定圖像首幀的目標(biāo)坐標(biāo)位置,計(jì)算在下一幀圖像中目標(biāo)的確切位置。在運(yùn)動(dòng)的過(guò)程中,目標(biāo)可能會(huì)呈現(xiàn)一些圖像上的變化,比如姿態(tài)或形狀的變化、尺度的變化、背景遮擋或光線亮度的變化等。目標(biāo)跟蹤算法的研究也圍繞著解決這些變化和具體的應(yīng)用展開(kāi)?;垡旳I板卡能夠凸顯AI的智慧之能,變被動(dòng)為主動(dòng),提供多種能主動(dòng)預(yù)警的視頻分析和人臉識(shí)別黑白名單管理。比較好的目標(biāo)跟蹤性價(jià)比
慧視光電的RK3588跟蹤板怎么樣?比較好的目標(biāo)跟蹤性價(jià)比
2010年以前,目標(biāo)跟蹤領(lǐng)域大部分采用一些經(jīng)典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點(diǎn)的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標(biāo)的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會(huì)對(duì)目標(biāo)進(jìn)行建模,比如利用目標(biāo)的顏色分布來(lái)描述目標(biāo),然后計(jì)算目標(biāo)在下一幀圖像上的概率分布,從而迭代得到局部密集的區(qū)域。Meanshift適用于目標(biāo)的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計(jì)算,它的很多改進(jìn)方法也一直適用至今。比較好的目標(biāo)跟蹤性價(jià)比